Here are some research experiences students at Pacific have participated in!

Liora Edelstein, Cherie Musgrove and Justin Bala-Hampton

These students performed research experiments in Dr. Wrischnik's lab using the experimental technique known as RNA interference (RNAi) to efficiently “knock out” genes in fruit flies. The students participated in the construction of the RNAi vectors, which were designed to destroy the function of DNA repair genes in fruit flies. In addition to learning the basics of molecular biology, these three students learned how to microinject DNA into fly embryos to get their DNA inserted into the fly genome. The latter research was made possible by the Department's sophisticated microinjection equipment.

Melissa Lipat

Melissa worked in Dr. Wrischnik's laboratory building several types of DNA vectors that facilitate visualization of the expression of DNA repair genes in fruit flies during development. She used the department's new, high-end inverted fluorescence microscope to visualize where these genes are expressed in live and fixed organisms. She also performed real-time PCR analysis to help confirm when these genes are expressed during fruit fly development.

Khanh Ngo

Khanh cloned several of the homologous recombinational repair proteins from the parasite Trichomonas vaginalis, a single-celled organism with a very ancient lineage. By using the department's ABI DNA Sequencer to analyze her clones, she revealed new information about the evolution of this repair pathway, as well as generated data to help understand the evolution of sex in single-celled organisms.

Coby La Mattina

Coby has been working in Dr. Vierra's laboratory on elucidating the molecular properties of black widow spider silk. She routinely dissects the abdominal silk-producing glands from the spiders to isolate RNA molecules that encode silk proteins. Applying quantitative real-time PCR analysis, Coby has determined the expression profiles for several different silk genes. In addition, she has learned how to screen cDNA libraries to hunt for new spider silk genes found in egg case silk, which represent one of the most ancient silk threads in spiders. These studies have relied on the use of mass spectrometry and molecular biology.

Russell Yee, Henry Chang and Shannon McNary

These students also work in Dr. Vierra's laboratory on the isolation of new silk genes from black widow spiders, as well as silk overexpression in bacteria and yeast. For the past two summers, they have worked full-time on the manipulation of spider silk genes using recombinant DNA methodology. Their studies have led to a better understanding regarding the molecular constituents of black widow silk, which has helped advance our knowledge with respect to the incredible tensile strength and elasticity found in silk threads. Long-term objectives include being able to produce synthetically for commercial applications, which include the use of synthetic silk for ropes and cords, medical sutures, bullet proof vests, and lightweight airplane wing materials